
Caucho Technology �1

Bartil: Distributed map/list/counter similar to Redis "
Abstract: Bartil is a Baratine service that exposes common data structures as REST services.
Bartil provides a map, list, tree, string, and counter type that are callable from any client
supporting WebSockets or HTTP. You can store any object as the key or value field in the map,
list, and tree data types.

Bartil services are persistent; they are stored into Baratine's internal key-value store,
io.baratine.core.Store. Saves to the store are batched for high performance and efficiency. Bartil
uses a journal to ensure that batched saves are reliable and protected from data loss. Bartil
services are addressed by URL. This enables clustering out of the box with no change in code.
When Bartil is deployed to a multi-server Baratine pod (virtual cluster), its services become
sharded automatically; requests are hashed on the URL and sent to the owning server.

In many ways, Bartil is very similar to Redis; thus, Bartil services should be familiar to Redis
users. Bartil shows that you can write any kind of Baratine service that runs about as fast as
Redis, but with much more functionality (without having to resort to Lua scripting).

"
"

"
"

"
"

"
"

Caucho Technology �2

Bartil: a Distributed Data
Structure Store on Baratine

Introduction

Baratine is a distributed POJO service
platform that lets you build object-
oriented web services quickly and
efficiently. These web services are
naturally clustered and can handle
millions of operations per second per
machine. A wide range of polyglot clients
can talk to your web services via
WebSockets and HTTP.

To showcase Baratine’s POJO-first
model, I introduce Bartil, a fast data
structure service built on top of Baratine.
Bartil is a portmanteau of the words
Baratine and java.util, emphasizing the
rich data structures (such as maps, lists,
trees, strings, and counters) that it
serves up as web services. Baratine’s
model provides automatic clustering to
Bartil, along with built-in support for both
synchronous and asynchronous clients.

"
"
"
"
"

What is Bartil?

Bartil provides rich data structures as
web services. These data structures are
like local libraries and have more
functionality than simple key-value stores
(i.e. Memcached).

Bartil is like a Java version of Redis,
another data structure store written in C,
and compares favorably to it in terms of
both features and performance. Redis is
23% faster than Bartil. On the other
hand, Bartil is easier to customize since it
is just Java code. Bartil is like a Java
web-app that runs on top of a general-
purposed container, which in this case is
Baratine.

"
"
"

re
q/

s
(5

0
cl

ie
nt

s)

0

50

100

150

Baratine Redis

117k

144k

Caucho Technology �3

Understanding Bartil

Baratine services that live at URLs
defined by the developer. A client needs
a service’s URL before it can call the
service. For Bartil, its services live at the
following base URLs:

- /map

- /list

- /tree

- /string

- /counter

Specific instances of a data structure
extend off of the base URL. For
example, /map/johnsmith1982 and /map/
acme-corp are two different instances.
The URLs are how Baratine provides
transparent sharding to your services.
Baratine hashes the URL to determine
which machine to send the request to.

"
"
"
"
"
"
"

The client interacts with a service
instance through a service API. For Java
clients, the Java interface is the service
API. Here is the /map interface:

public interface MapServiceSync<K,V> extends

MapService {

V get(K key);
List<K> getKeys(); "
List<V> getValues();
List<V> getMultiple(K ... keys);
Map<K,V> getAll(); "
boolean containsKey(K key);
boolean containsValue(V value);
int put(K key, V value);
boolean putIfAbsent(K key, V value); "
int putMap(Map<K,V> map);
int remove(K key);
int removeMultiple(K ... keys); "
boolean rename(K key, K newKey);
int size();
int clear(); "
boolean delete();
boolean exists(); }

Given the above API, a Java client can
call the remote service as if it is a plain
old Java object:

String host = “http://127.0.0.1:8085/s/pod”;

ServiceClient client =
ServiceClient.newClient(host).build();

MapServiceSync map = client.lookup(“/map/
johnsmith1982”)

.as(MapServiceSync.class);

map.put(“status”, “offline”);

Caucho Technology �4

The Java client first connects to the
Baratine server. Then it creates a proxy
for the service at the given URL. The
proxy is responsible for serializing Java
method calls into messages and sending
them over the wire to the Bartil service.
Getting the proxy to the service is a two-
step process:

1. calling lookup() to create a generic
proxy for the service

2. calling as() to create a class-specific
API proxy from the generic proxy

Asynchronous methods

The as() method allows a client to cast to
whatever API it may choose, as long as
the underlying service implementation is
compatible. Through this mechanism,
different clients can use different APIs -
all pointing to the same service.

In addition to the synchronous APIs, Bartil
also provides asynchronous APIs for
each of its data structures. Generally, the
asynchronous methods mirror the
synchronous ones:

public interface MapService<K,V> {

void get(K key, Result<V> result);
void getKeys(Result<List<K>> result); "
void getValues(Result<List<V>> result);
void getMultiple(Result<List<V>> result, K ...
keys);
void getAll(Result<Map<K,V>> result);
void containsKey(K key, Result<Boolean> result);

void containsValue(V value, Result<Boolean>
result);
void put(K key, V value, Result<Integer> result);
void putIfAbsent(K key, V value,
Result<Boolean> result); "
void putMap(Map<K,V> map, Result<Integer>
result);
void remove(K key, Result<Integer> result);
void removeMultiple(Result<Integer> result, K ...
keys); "
void rename(K key, K newKey, Result<Boolean>
result);

void size(Result<Integer> result);
void clear(Result<Integer> result); "
void delete(Result<Boolean> result);
void exists(Result<Boolean> result);
} ""
Baratine maps the synchronous and
asynchronous methods to the same
implementation, provided the methods
are compatible (e.g. same name, same
arguments excluding Result).

The differences between synchronous
and asynchronous methods are that
asynchronous methods:

3. return void

4. accept an io.baratine.core.Result
argument

"
Asynchronous methods must return void
to inform callers that they don’t have to
wait for the return value. The Result
argument is a continuation (a type of

Caucho Technology �5

callback) that is to be executed by the
caller when the service returns the
response. The service may return a
response as soon as it receives the
request, or anytime in the future.

To use the asynchronous API, you just
need to cast the proxy to it in the as() call:

MapService map = client.lookup(“/map/

johnsmith1982”).as(MapService.class);

map.put(“status”, “offline”, size ->

{ System.out.println(“size is ” + size));

});

When the return value comes
back to the caller, the caller
executes the continuation with
that value. In the example
above, the Result is a JDK8
lambda that simply prints out the
size of the map.

To summarize, the following are
powerful features that are unique
to Baratine:

1. programming to service APIs

2. using either synchronous or
asynchronous APIs

"
"

Performance

Bartil can process millions of requests per
second per machine because it operates
mostly in memory. Baratine allows Bartil
to batch multiple writes to the backing
store into a large singular write to be
written later.

This reduces load dramatically and allows
the common path to be in memory and
free of writes. The chart below shows
that performance increases linearly (a
highly desired characteristic) as load
increases:

"
Batching is possible in the first place
because of an Inbox that sits in front of
every Baratine service. Incoming
requests are queued onto the Inbox and
the service processes requests from the

Caucho Technology �6

queue. This guarantees order and
consistency, which makes batching
possible, but more importantly, safe.

"
Summary

Bartil is high-performance data structure
service that runs on Baratine, a POJO
service platform. It shows the general-
purpose nature of Baratine and the wide
variety of applications that you can
develop with Baratine. Baratine is open
source and suitable for cloud applications
that require extreme performance.

